A spectral Galerkin method for a boundary integral equation

Author:
W. McLean

Journal:
Math. Comp. **47** (1986), 597-607

MSC:
Primary 65R20; Secondary 45L10

DOI:
https://doi.org/10.1090/S0025-5718-1986-0856705-2

MathSciNet review:
856705

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the boundary integral equation which arises when the Dirichlet problem in two dimensions is solved using a single-layer potential. A spectral Galerkin method is analyzed, suitable for the case of a smooth domain and smooth boundary data. The use of trigonometric polynomials rather than splines leads to fast convergence in Sobolev spaces of every order. As a result, there is rapid convergence of the approximate solution to the Dirichlet problem and all its derivatives uniformly up to the boundary.

- Douglas N. Arnold,
*A spline-trigonometric Galerkin method and an exponentially convergent boundary integral method*, Math. Comp.**41**(1983), no. 164, 383–397. MR**717692**, DOI https://doi.org/10.1090/S0025-5718-1983-0717692-8
J. Bergh & L. Löfström, - Søren Christiansen,
*On two methods for elimination of nonunique solutions of an integral equation with logarithmic kernel*, Applicable Anal.**13**(1982), no. 1, 1–18. MR**647662**, DOI https://doi.org/10.1080/00036818208839372 - R. E. Edwards,
*Functional analysis. Theory and applications*, Holt, Rinehart and Winston, New York-Toronto-London, 1965. MR**0221256** - Peter Henrici,
*Fast Fourier methods in computational complex analysis*, SIAM Rev.**21**(1979), no. 4, 481–527. MR**545882**, DOI https://doi.org/10.1137/1021093 - G. C. Hsiao, P. Kopp, and W. L. Wendland,
*A Galerkin collocation method for some integral equations of the first kind*, Computing**25**(1980), no. 2, 89–130 (English, with German summary). MR**620387**, DOI https://doi.org/10.1007/BF02259638 - George C. Hsiao and Wolfgang L. Wendland,
*A finite element method for some integral equations of the first kind*, J. Math. Anal. Appl.**58**(1977), no. 3, 449–481. MR**461963**, DOI https://doi.org/10.1016/0022-247X%2877%2990186-X - M. A. Jaswon and G. T. Symm,
*Integral equation methods in potential theory and elastostatics*, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1977. Computational Mathematics and Applications. MR**0499236** - U. Lamp, K.-T. Schleicher, and W. L. Wendland,
*The fast Fourier transform and the numerical solution of one-dimensional boundary integral equations*, Numer. Math.**47**(1985), no. 1, 15–38. MR**797875**, DOI https://doi.org/10.1007/BF01389873
W. McLean, - W. McLean,
*Error estimates for a first kind integral equation and an associated boundary value problem*, Miniconference on linear analysis and function spaces (Canberra, 1984) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 9, Austral. Nat. Univ., Canberra, 1985, pp. 223–240. MR**825529**
J. Marcinkiewicz, "Sur les multiplicateurs des séries de Fourier," - S. G. Mikhlin,
*The numerical performance of variational methods*, Wolters-Noordhoff Publishing, Groningen, 1971. Translated from the Russian by R. S. Anderssen. MR**0278506** - S. M. Nikol′skiĭ,
*Approximation of functions of several variables and imbedding theorems*, Springer-Verlag, New York-Heidelberg., 1975. Translated from the Russian by John M. Danskin, Jr.; Die Grundlehren der Mathematischen Wissenschaften, Band 205. MR**0374877** - Gregory Verchota,
*Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains*, J. Funct. Anal.**59**(1984), no. 3, 572–611. MR**769382**, DOI https://doi.org/10.1016/0022-1236%2884%2990066-1 - Rudolf Wegmann,
*Convergence proofs and error estimates for an iterative method for conformal mapping*, Numer. Math.**44**(1984), no. 3, 435–461. MR**757498**, DOI https://doi.org/10.1007/BF01405574

*Interpolation Spaces*, Springer-Verlag, Berlin and New York, 1976.

*Boundary Integral Methods for the Laplace Equation*, Thesis, Australian National University, Canberra, 1985. W. McLean,

*A Computational Method for Solving a First Kind Integral Equation*, Research Report CMA-R15-85, Centre for Mathematical Analysis, Australian National University, 1985.

*Studia Math.*, v. 8, 1939, pp. 78-91.

Retrieve articles in *Mathematics of Computation*
with MSC:
65R20,
45L10

Retrieve articles in all journals with MSC: 65R20, 45L10

Additional Information

Article copyright:
© Copyright 1986
American Mathematical Society